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Shock-expansion theory and simple wave perturbation 

By J. G. JONES 
Royal Aircraft Establishment, Bedford 

(Received 28 March 1963) 

The calculation by shock-expansion theory of supersonic aerofoil flow fields with 
varying entropy is simplified by assuming the flow behind the curved attached 
shock to be a small perturbation of a simple wave. A characteristic perturbation 
method is used. 

1. Introduction 
Shock-expansion theory was used by Epstein (1931) to determine surface 

pressures on an aerofoil behind a curved shock wave. In  this theory the assump- 
tion is made that the flow at the surface is the same as in a simple wave, or 
Prandtl-Meyer expansion, the level of entropy being taken as that behind an 
oblique shock wave determined by the aerofoil leading-edge angle. Weight has 
been given to the validity of this assumption, particularly in the case y = 1.4, by 
Mahoney & Skeat (1955) who show that reflected disturbances at  the shock wave 
tend to be largely cancelled out when propagating back to the aerofoil surface 
owing to the effect of the entropy gradient behind the curved shock. 

Eggers, Syvertson & Kraus (1953) extended the concept, in their ‘generalized 
shock-expansion method ’, to enable the entire flow field to be calculated. In  this 
method a similar assumption to that of Epstein is now made for every streamline 
in the flow field, since any streamline could be replaced by a solid aerofoil surface. 
The method is simpler than the full numerical method of characteristics and yet 
takes into account the entropy gradients in the flow field. 

In  the present, paper the above method of calculating the flow field is further 
simplified by assuming that the reflected disturbances and entropy gradients in 
the flow field are small and hence that the entire flow field can be described by 
means of a small perturbation of a simple wave (at the entropy level behind the 
attached shock at the aerofoil leading edge). The justification for this is that since 
at low supersonic speeds it is known that reflected disturbances and entropy 
gradients can be neglected to a good approximation (Friedrichs 1948) the present 
method should be applicable at  slightly higher Mach numbers, where such effects 
are now taken into account to first order. Moreover, it appears that at  even higher 
Mach numbers (say up to M = 4 or 5 ) ,  where there is a larger entropy increase 
through the attached curved shock, the entropy variation in the field and reflected 
disturbances may still be small (Mahoney & Skeat 1955), their squares negligible, 
and the present method applicable. 

The advantage of the present method is that whereas both the full character- 
istics method and ordinary shock-expansion theory need two-dimensional 
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numerical calculations in the form of a mesh in order to find the curved shock 
shape and flow field behind it, the small perturbation assumption allows the shock 
shape to be calculated by a one-dimensional numerical step-by-step technique 
and the flow field behind it to be filled in later if required. The method uses a 
characteristic perturbation technique having a parametric variable which is 
taken as constant on perturbed outgoing characteristics. 

An alternative approach to the problem of finding perturbations of simple 
wave flows using characteristic variables has been described by Waldman & 
Probstein (196 1)) based on work by Mahoney (1955). Also, an analytical develop- 
ment of shock-expansion theory, including the calculation of shock shape, has 
been given by Meyer (1956). However, the co-ordinate systems used by these 
authors are different from those used in the present paper, leading to results of 
quite different form. The present method appears to be better adapted to the 
simple evaluation of numerical results. 

2. Review of basic equations 

steady, supersonic flow of a perfect gas. In  characteristic form: 
We begin by reviewing the equations of motion for the two-dimensional, 

da+sinZpd@ = 0 on dyldx = tan(O-p), ( 1 )  

dp-sin2pdO = 0 on dy/dx = tan(O+p), ( 2 )  

and dO = 0 on dy/dx = tan8, (3) 

where a = 8+t,  (4) 

p = 8- t ,  ( 5 )  

x ,  y are Cartesian position co-ordinates in the plane of the flow, 8 is the local 
angle made by a streamline with the x-axis, p is the local Mach angle, t the 
Prandtl angle given by 

t = p - h tan-l ( A  tanp) + in(h - 1) 

@ = S /Sy (y  - 1) c,, 

(6) 

( 7 )  

with A2 = (y  + l) /(y - l),  y being the ratio of specific heats, and 

where S is the specific entropy and c, the specific heat at  constant volume. 

wave. Then dy/dx = tan (8  +p) 

is the equation of outgoing, nearly straight, characteristics from the aerofoil to 

the shock wave, and dy/dx = tan (8 -p) 

is the equation of curvilinear characteristics carrying disturbances ‘reflected ’ 
from the shock wave. 

We consider the flow past a sharp-nosed aerofoil with attached curved shock 

3. Review of assumptions of shock-expansion theory 
The basic assumption of shock-expansion theory, when used for calculating 

the flow field (Eggers et al. 1953), is that on each streamline the flow is the same 
as in a simple wave, or Prandtl-Meyer expansion. In  a simple wave 

a = const. (8) 
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throughout the flow field. So the assumption can be written in the form 

da = 0 on d y / d x  = tan8. (9) 
It is easily seen that equation (9) is not exactly compatible with the basic 

equations in general. For, with equation (3), equation (9) implies a functional 
relationship between a and @, and taken with equation (1) this would imply 
that p did not vary along streamlines. In  the exact flow field lines of constant 01 
make a small angle with streamlines dy ldx  = tan 0 (this follows from the work of 
Mahoney & Skeat 1955) but cannot in general exactly coincide with them. How- 
ever, if equation (9) is used and equation (1) is dropped, a consistent set of equa- 
tions is obtained, from which the approximate flow field can be calculated. 

Eggers et al. (1953) show that an alternative, but equivalent, basis for shock- 
expansion theory is to use the relationship: 

instead of equation (9). It follows from equations (l), (2) and (3) that when 
equation (9) is a good approximation, equation (10) is equally so. Under these 
conditions lines of constant 0 make a small angle with outgoing characteristics 
dy ldx  = tan (O+,u) in the exact flow field but cannot in general exactly coincide 
with them. The alternative basis of shock-expansion theory, then, is to use the 
consistent set of equations obtained by assuming equation (10) and dropping, as 
before, equation (1) .  This latter approach is the one to be followed, for reasons of 
algebraic convenience, in the following sections. 

dO = 0 on d y / d x  = tan(O+p) ( 10) 

4. Simple wave perturbation 
The basis of the present method is to obtain the flow field behind the shock 

wave, in the form of a small perturbation of the simple wave defined by the 
boundary conditions at the aerofoil surface and the entropy level behind the 
attached shock at  the aerofoil leading edge, by solving the exact equations (2) and 
(3) with the approximate equation (10) used as a subsidiary condition. Theresult- 
ing equations are now derived and it is shown how the flow field behind the shock 
wave can be found parametrically. The numerical method for finding the shock- 
wave position, which completes the solution, is described in the following section. 

The solution for the flow field behind the shock wave is expressed in terms of 
co-ordinates ($o, r ) ,  where qb0 is constant on the streamlines of the unperturbed 
simple wave, now assumed known, and 7 is a parametric variable which is 
constant on the outgoing characteristics of the perturbed flow field (figure 1). 
Suffix zero is taken to denote the basic simple wave 

a. = const. (11) 
A co-ordinate s is used to denote distance along the aerofoil measured from the 

leading edge 0 (figure 1). Then each characteristic, 7 = const., is uniquely 
related by its point of origin F on the aerofoil surface (figure 1) to a corresponding 
characteristic, ro = const., of the basic simple wave, giving the following 
relationships : T = f (s), (13) 

T o  = ds), (13) 

To = To(T) .  (14) 
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Equation (2) can now be written in the form 

aP(@o? r)/Wo = Sin2P(@o, r )W@o,  r)/%+o* (15) 

Writing e2 = eo+el, t2 = to+tl, (16) 

and P 2  = P o  + P1, (17) 

0 x 

FIGURE 1. The co-ordinate system. 

where the suffix unity denotes small perturbation terms, the linearized form of 
equation (15) is 

where p0 takes its value on the basic simple-wave characteristic r0 = const., 
yo being related to 7 by equation (14). Similarly, the linearized forms of equations 

(18) 3/32(@09 V ) / W O  = sin ~ P O = ) l W O ,  r o ( r ) W 0 9  

(10) and (3) are 
(191 

and d@, = 0 on dyldx = tan8,. (20) 

Using the boundary condition of zero perturbation a t  the aerofoil surface the 
solutions of the above equations give 

The function @l(@o) is determined by the entropy change a t  the shock wave. 
When the shock wave is known, equations (21) and (22) describe the flow field 
completely at the point E(@.,, 7) (figure l),  where 7 is regarded as a parametric 
variable. 

It remains to locate the point E(@,, 7) in the flow plane. In general this would 
be done by expressing Cartesian co-ordinates ( x ,  y )  in terms of the variables 
(Ilr0, 7). Here, however, it is more convenient from a computational point of view 
to locate the point E by finding the distance LE (figure 1)  (taken as positive 
when E is downstream of L), parallel to the free stream, from E to the line 
qo = const., where r0 is given by equation (14). The position of E can then be 
found by an elementary construction. 
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The tangent at a point ($o, 7) on the perturbed characteristic q = const. makes 
an angle with the associated characteristic qo = const. of, to first order, 

( 6 2  - 60) + (P2 -Po) = (P2 -Po) = (dwP)01(t2 - t o )  = - ( ~ t i ~ P ) o 1 @ 1 ( $ o )  sin2P0, 

where equations (21) and (23) have been used. Integration then gives the length 
of the perpendicular from E on to ?lo = const., and hence 

where r is strictly the distance from F (figure 1) to the foot of the perpendicular 
from E on to q0 = const., but to first order can be more conveniently replaced by 
the distance FL’ (figure 1) where L’ lies on the basic streamline @o = const. It 
then follows from Courant & Friedrichs (1948) that the stream function can be 
chosen so that 

where wo = ~ ~ ( 7 ~ )  is the angle between the y-axis and the outgoing characteristic 
(figure l), 

(25) r = $o[cos h-l(w, - w*)]-h2, 

referring to critical conditions. Equations (24) and (25 )  then give 

This completes the location of the point E($o, r ) ,  and the parametric solution for 
the flow field, when the shock-wave position is known. In the following section 
it is shown how these results can be used as the basis of a numerical method for 
calculating this shock-wave position. 

5. Calculation of shock-wave position 
The final step in the development of the method is to note that, although the 

term in braces in equation (26) refers to the properties of the basic simple wave on 
the characteristic qo = const. through L, it may be replaced to first order, since 
the factor outside the brackets is a small quantity, by its value 011 the character- 
istic of the basic simple wave F’E, through E (figure 2). The step-by-step shock- 
wave calculation (figure 3) now proceeds as follows. 

A basic mesh consisting of the known streamlines and outgoing straight 
characteristics of the basic simple wave defined by the aerofoil shape, at  the 
entropy level behind the oblique shock attached a t  the leading edge, is used. 
Suppose the shock-wave shape to have been calculated as far as the point E 
(figure 2) in (n - 1)  steps. The nth step is constructed as follows. The approximate 
value of 

I o * O  Ql($ro) w.0 

is obtained from the steps already constructed. The value of the bracketed term 
in equation (26) is determined for the basic simple-wave characteristic F’E 
through E, as already described. Equation (26) then gives the distance LE 
(figures 1,2) ,  determining the basic characteristic FL, qo = const. Equation (21) 
then gives the flow deflection in the perturbed flow field at  E, from which the new 
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shock angle for the nth step is found. The corresponding value of (Dl and the value 
of dliro (from equation (25)) for the .nth step enable the new approximate value of 

to be found. The process can now be repeated. 

FIGURE 2. Step-by-step shock calculation. 

chordwise station xic 

FIGURE 3. Shape of shock wave for 10 yo thick biconvex aerofoil a t  M ,  = co. 
__ , Characteristics ; - - - - , shock-expansion method ; -. -. - , present method. 

The advantage of the above method of shock-wave calculation over the usual 
shock-expansion theory is that it is a one-dimensional step-by-step construction, 
whereas the usual theory requires the numerical computation of a two- 
dimensional mesh over the whole flow field. In  the present method the perturbed 
outgoing characteristics, and other details of the flow field behind the shock, can 
be filled in if required after the shock-wave calculation has been completed, as 
described in 5 4. 

As stated earlier, by taking the Mach number low enough, the basic assump- 
tions (of small entropy perturbation and small reflected disturbances) become 
realized and a simple method is provided for calculating flow fields at  least at  
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Mach numbers not much beyond the range in which the methods of Friedrichs 
(1948) apply. Unfortunately, there is a lack of published full shock-expansion 
solutions and of characteristics solutions at  higher Mach numbers ( M  = 4 or 5 ) ,  
so a detailed check on the range of application of the present method has not been 
made. However, the shock-wave position calculated by the present method is 
compared in figure 3 with that calculated by full shock-expansion theory and by 
the method of characteristics (from Eggers et al. 1953) in the limiting case of 
infinite free-stream Mach number, taking y = 1.4. The excellent agreement with 
full shock-expansion theory in this case is surprising, and probably somewhat 
fortuitous. However, the method certainly gives sensible results in this particular 
case and thus may even be useful at  high Mach numbers if approximate results 
are required with a minimum of numerical effort. 

6. Conclusions 
A method for calculating the flow field past a sharp-nosed aerofoil a t  super- 

sonic speeds has been presented. The assumptions made include those of the usual 
shock-expansion theory and the extra assumption that the flow field behind the 
curved shock wave can be represented as a small perturbation of a simple wave, 
the basic level of entropy being taken as that behind the attached shock at  the 
leading edge. The advantage of the method is that the shock-wave position can 
be calculated in a one-dimensional numerical step-by-step manner, instead of re- 
quiring a numerical computation over a two-dimensional mesh covering the whole 
flow field. The flow field behind the shock wave can easily be deduced if required. 

This approach should give results as good as those of ordinary shock-expansion 
theory in the low-Mach-number range where entropy changes a t  the shock first 
become important (about M = 3), since a t  slightly lower Mach numbers the 
terms now regarded as small are negligible (Friedrichs 1948). For a particular 
aerofoil a comparison of calculated shock-wave position has been made with 
shock positions given by ordinary shock-expansion theory and full character- 
istics in the limiting case of infinite free-stream Mach number (and y = 14). The 
result suggests that the method may also be useful at high Mach numbers if 
approximate results are required with a minimum of numerical effort. 
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